

Course Information Document: Undergraduate

For students starting in Academic Year 2018/2019

1. Course Summary

Names of programme(s) and award title(s)	BSc (Hons) Medicinal Chemistry
	BSc (Hons) Medicinal Chemistry with International Year
	(see Annex A for details)
Award type	Combined Honours
	NB: all students who study a science Principal subject are candidates for the degree of Bachelor of Science (with Honours) (BSc Hons) irrespective of their second Principal subject.
Mode of study	Full time
Framework of Higher Education Qualification (FHEQ) level of final award	Level 6
Duration	3 years
	4 years with International Year
Location of study	Keele University – main campus
Accreditation (if applicable)	Combined honours degrees which specialise in Medicinal Chemistry in the final year are accredited by the Royal Society of Chemistry.
Regulator	Higher Education Funding Council for England (HEFCE)
Tuition Fees	UK/EU students: Fee for 2018/19 is £9,250*
	International students: Fee for 2018/19 is £14,360** (if combined with a non- laboratory-based Principal Subject)
	or
	£15,480**
	(if combined with a laboratory-based Principal Subject)
	The fee for the international year abroad is calculated at 15% of the standard year fee
Additional Costs	Refer to section 15

^{*}These fees are regulated by Government. We reserve the right to increase fees in subsequent years of study in response to changes in government policy and/or changes to the law. If permitted by such change in policy or law, we may increase your fees by an inflationary amount or such other measure as required by government policy or the law. Please refer to the accompanying Student Terms & Conditions. Further information on fees can be found at http://www.keele.ac.uk/studentfunding/tuitionfees/

^{**} We reserve the right to increase fees in subsequent years of study by an inflationary amount. Please refer to the accompanying Student Terms & Conditions for full details. Further information on fees can be found at http://www.keele.ac.uk/studentfunding/tuitionfees/

How this information might change: Please read the important information at http://www.keele.ac.uk/student-agreement/. This explains how and why we may need to make changes to the information provided in this document and to help you understand how we will communicate with you if this happens.

2. What is a Combined Honours programme?

Combined Honours degrees are degrees that are taken in two different subjects, resulting in an *X* and *Y* degree title, for example *Medicinal Chemistry and Physics*. If you are taking a Combined Honours programme, these will be the two subjects you applied for. These are referred to as your Principal Subjects.

In a Combined Honours degree, you must take at least 135 credits in each Principal Subject (270 credits in total), accrued over all three levels of study, with at least 45 credits at each level of study (Levels 4, 5 and 6) in each of two Principal Subjects (90 credits per year). The remaining available credits can be filled with modules from these subjects or other subjects entirely.

As a Combined Honours student, you can choose to study just one subject in your final year of study, taking a minimum of 90 credits in this subject. This will result in an *X with Y* degree title, for example *Medicinal Chemistry with Physics*.

Note: For clarity, this document refers to each level of study by its FHEQ level. Year 1 corresponds to Level 4, Year 2 to Level 5, and Year 3 to Level 6.

Level	Combined Honours	Combined Honours (Specialisation)	Combined Honours (International Year)
4	60 credits (Medicinal Chemistry) 60 credits	60 credits (Medicinal Chemistry) 60 credits	60 credits (Medicinal Chemistry) 60 credits
	(subject X) 60 credits	(subject X) 60 credits	(subject X) 60 credits
5	(Medicinal Chemistry) 60 credits (subject X)	(Medicinal Chemistry) 60 credits (subject X)	(Medicinal Chemistry) 60 credits (subject X)
International Year	(subject X)	(Subject N)	Equivalent of 120 credits (Pass/Fail)
6	60 credits (Medicinal Chemistry)	105-120 credits (Medicinal Chemistry)	60-120 credits (Medicinal Chemistry)
	60 credits (subject X)	0-15 credits (Elective)	0-60 credits (subject X) 0-15 credits (Elective)
Total Credits	360	360	360
Degree	BSc Medicinal Chemistry AND X	BSc Medicinal Chemistry WITH X	BSc Medicinal Chemistry AND X with International Year, or BSc Medicinal Chemistry WITH X with International Year

3. Overview of the Programme

The search for new drugs to treat a wide range of human ailments such as heart disease and cancer remain a great challenge to the pharmaceutical and biotechnology industries. The Medicinal Chemistry course at Keele provides you with an understanding of the complex biological and chemical problems that are involved in the design and synthesis of novel therapeutic agents. The course draws on basic chemical principles to solve problems at the interfaces of chemistry, biochemistry, molecular biology and pharmacology. In first and second year, lectures cover core material for study, introducing you to concepts that are developed in workshops and laboratory classes. Assessment is through a combination of exams and coursework including reports,

presentations, and laboratory diaries. You will receive comprehensive feedback on assessed work in a variety of formats including written, audio, and face-to-face methods.

In third year, lectures and seminars cover research-focused material. Assessment includes exams and coursework designed to further develop information retrieval and critical thinking skills. Project work is in the format of a research project module and/or a dissertation module. Research project work is assessed through the evaluation of the laboratory diary, an oral examination and writing of a scientific paper, whereas the dissertation module focuses on the writing of a peer-reviewed literature dissertation and the presentation of these findings. Throughout your degree, you will have access to excellent laboratory facilities that are exceptionally well equipped with computational facilities and chemical instrumentation, much of which is research grade. The structure of the programme is designed to enable you to enhance your employability through the development of problem-solving, practical, presentational and communication skills as well as developing your research skills and your capacity to learn independently. If you take advantage of the full range of opportunities the programme offers, you will have acquired the knowledge and skills to present yourself with confidence in pursuit of your chosen career in a competitive world.

4. Aims of the Programme

The broad aims of the programme are to:

- · equip you with depth and breadth of chemistry and medicinal chemistry knowledge,
- develop a wide range of laboratory and analytical skills,
- develop enhanced problem solving, research and communication skills.

5. What you will learn

The intended learning outcomes of the programme (what students should know, understand and be able to do at the end of the programme), can be described under the following headings:

- Subject knowledge and understanding
- Subject specific skills
- Intellectual skills
- Key or transferable skills (including employability skills)

Subject knowledge and understanding

Successful students will be able to demonstrate:

- knowledge of the major aspects of chemical terminology and vocabulary
- knowledge and understanding of fundamental physicochemical principles
- knowledge of a range of inorganic and organic materials
- understanding of general synthetic pathways, including related isolation, purification and characterisation techniques
- awareness of issues within chemistry that overlap with other related disciplines
- knowledge of selected aspects of chemistry at the forefront of the discipline
- knowledge of aspects of chemical science research methods and peer-reviewed chemical science literature

Subject specific skills

Successful students will be able to:

- demonstrate skills in the safe-handling of chemical materials, taking into account their physical and chemical properties including any specific hazards associated with their use
- conduct risk assessments
- conduct documented laboratory procedures in synthetic and analytical work, in relation to both inorganic and organic systems
- monitor, by observation and measurement, chemical properties, events or changes, with systematic and reliable recording and documentation thereof
- operate standard chemical instrumentation
- interpret and explain the limits of accuracy of their own experimental data in terms of significance and underlying theory

Intellectual skills

Successful students will be able to:

- demonstrate knowledge and understanding of essential chemistry-related facts, concepts, principles and theories
- apply such knowledge and understanding to the solution of qualitative and quantitative problems, both familiar and unfamiliar
- recognise and analyse problems and plan strategies for their solution
- evaluate, interpret and synthesise chemical information and data
- · carry out practical application of theory using computer software and models
- communicate scientific material and arguments
- use information technology (IT) to manipulate and present chemical information and data

Key or transferable skills (including employability skills)

Successful students will be able to:

- communicate information, ideas, problems, and solutions to both specialist and non-specialist audiences orally and in writing
- demonstrate problem-solving skills, relating to qualitative and quantitative information
- demonstrate numeracy and mathematical skills, including such aspects as error analysis, order-ofmagnitude estimations, correct use of units and modes of data presentation
- retrieve and cite information, in relation to primary and secondary information sources, including retrieval of information through online computer searches
- demonstrate skills in the use of information technology for presenting information and data
- interact with other people and engage in team-working, time management and organisational skills, as evidenced by the ability to plan and implement efficient and effective modes of working
- show development of skills and awareness necessary to seek out opportunities to undertake appropriate further training of a professional nature

Additional learning outcomes specific to BSc Medicinal Chemistry with International Year

Successful students will be able to:

 Describe, discuss and reflect upon the cultural and international differences and similarities of different learning environments

- Discuss the benefits and challenges of global citizenship and internationalisation
- Explain how their perspective on their academic discipline has been influenced by locating it within an international setting
- Design, plan and critically evaluate practical investigation, record relevant information accurately and systematically and be able to reflect upon the data in critical manner
- Develop, synthesize and apply fundamental principles and solve specific problems in the context of selected scientific discipline.

6. How is the Programme taught?

Learning and teaching methods used on the programme vary according to the subject matter and level of the module. They include the following:

- Lectures, lecture breaks and self-tests
- Interactive personal response systems
- Screencasts
- Recorded lectures
- Tablet PCs
- Demonstrations
- Detailed personalised and generic written and face-to-face feedback
- Electronic submission and return of marked coursework (with feedback)
- Audio feedback
- Screencast feedback
- Pre-laboratory and post-laboratory exercises
- Laboratory classes
- Research projects
- Problem classes and workshops
- Problem-based and context-based activities
- IT instruction (spread sheets, word-processing, chemical structure drawing, databases, textbook resources, information retrieval and literature searching)
- Group work
- Self and peer-assessment for learning
- Information literacy activities
- Computer-aided learning (simulations and animations, online activities and exercises)
- Case studies
- Chemical Sciences Seminar Series
- Use of e-learning/the Keele Learning Environment (KLE)

Apart from these formal activities, students are also provided with regular opportunities to talk through particular areas of difficulty, and any special learning needs they may have, with their Personal Tutors or module lecturers on a one-to-one basis.

7. Teaching Staff

A dynamic group of staff with a broad range of expertise teach on the programme and bring a wealth of experience acquired through fundamental and applied research across a diverse range of areas. Some current staff members are internationally recognised leaders in their field and manage research groups comprising postgraduate research students and postdoctoral researchers, some of whom contribute to the teaching on the programme. Reflecting the diverse range of research expertise, some staff members also contribute to the Forensic Science, and Applied Environmental Science programmes at Keele. Many current teaching staff hold, or are working towards an accredited Higher Education Teaching qualification and many are Fellows of the Higher Education Academy (FHEA), the professional body for teachers in Higher Education. A number of the teaching

staff have established a national reputation for excellence in teaching and learning and have been recognised for their innovation in teaching through university and national teaching excellence awards, and the attraction of funding for teaching innovation projects.

The University will attempt to minimise changes to our core teaching teams, however, delivery of the programme depends on having a sufficient number of staff with the relevant expertise to ensure that the programme is taught to the appropriate academic standard.

Staff turnover, for example where key members of staff leave, fall ill or go on research leave, may result in changes to the programme's content. The University will endeavour to ensure that any impact on students is limited if such changes occur.

8. What is the Structure of the Programme?

The academic year runs from September to June and is divided into two semesters. The number of weeks of teaching will vary from course to course, but you can generally expect to attend scheduled teaching sessions between the end of September and mid-December, and from mid-January to the end of April.

Our degree courses are organised into modules. Each module is usually a self-contained unit of study and each is usually assessed separately with the award of credits on the basis of 1 credit = 10 hours of student effort. An outline of the structure of the programme is provided in the tables below.

There are three types of module delivered as part of this programme. They are:

- Compulsory modules a module that you are required to study on this course;
- Optional modules these allow you some limited choice of what to study from a list of modules;
- Elective modules a free choice of modules that count towards the overall credit requirement but not the number of subject-related credits.

A summary of the total credit requirements per year is as follows, with a minimum of 90 subject credits (compulsory plus optional) required for each year across both of your Principal Subjects. This document has information about *Medicinal Chemistry* modules only; please also see the document for your other subject.

Year	Compulsory	Optional		Electives	
		Min	Max	Min	Max
1	60	0	0	0	0
2	60	0	0	0	0
3*	30-105	15-30	30	0	0-15

^{*} in year 3 there is the option to choose to specialise in one of your subjects, taking a minimum of 105 credits in this subject rather than taking modules from both subjects

It is possible to transfer onto the following courses from BSc Medicinal Chemistry. You may elect to transfer between any of the courses tabulated below according to the deadlines given:

Degree Title	Duration	Transfer Deadline
BSc Medicinal Chemistry with	4 years	Transfer by week 1 of semester 1 of year 2
International Year (Combined Honours)		
BSc Chemistry (Combined Honours)	3 years	Transfer by week 1 of semester 1 of year 2
BSc Chemistry (Single Honours)	3 years	Transfer by week 1 of semester 1 of year 2
MChem Chemistry	4 years	Transfer by week 1 of semester 1 of year 2

A summary of the BSc Medicinal Chemistry with International Year programme is provided in Annex A. Please consult the MChem programme specification for full details. Please consult the BSc Chemistry programme specification for full details.

Module lists

Year 1 (Level 4)

There are two compulsory 30-credit modules taken by all chemistry students at Level 4.

Whilst laying the foundations of the principles and vocabulary of Chemistry, you will be challenged to question knowledge and the nature of knowledge when you start to encounter problems that have more than one answer or interpretation. You will be exposed to experimental evidence from a variety of sources and start to learn how such evidence supports, undermines or otherwise, the theoretical models and ideas upon which the subject of Chemistry is built. The practical classes emphasise development of core practical skills through handson experience of key techniques and procedures, as well as skills in laboratory safety, maintaining a laboratory diary, observation, information retrieval, IT skills, scientific writing and reporting in a variety of formats.

Compulsory modules	Credits	Optional modules	Credits
Chemical Structure and Reactivity	30	None	
Practical and Professional Chemistry Skills	30		

Year 2 (Level 5)

Students will take three chemistry modules (one 30-credit module two 15-credit remaining chemistry modules.

In Year 2 the knowledge and skills acquired in Year 1 are developed with an increasing emphasis on the need to integrate knowledge and critically evaluate experimental evidence in solving theoretical and practical problems. In practical classes, new practical skills are developed and an increasing emphasis is placed on critical evaluation of experimental design and the analysis of complex data from multiple sources, including computational theoretical calculations and the scientific peer-reviewed literature. Sophisticated analytical techniques are introduced and applied to the investigation of a variety of problems, whilst communication skills are developed to include skills in oral presentation. The first dedicated Medicinal Chemistry module links together the key chemical concepts and applies these to the process of drug design and the interaction of drugs with the body.

Compulsory modules	Credits	Optional modules	Credits
Molecular Chemistry and Reactions	30	None	
Spectroscopy and Analysis	15		
Medicinal and Biological Chemistry 1	15		

Year 3 (Level 6)

In Year 3, increasingly sophisticated theories and ideas are introduced which require you to draw upon, integrate and extend the fundamental chemical principles introduced during Years 1 and 2. Choice of modules is available to allow you to pursue your specific interests, as well as choice within the Topics in Medicinal Chemistry module. Course work is designed to allow you to develop a range of subject specific skills, focussing on engaging with scientific literature and experimental data sets, and working towards the Graduate Attributes through presentation, interviews and various written reports. You will also carry out a 15-credit Dissertation or Project (selected from a wide variety of research projects on offer) which places increased emphasis on your ability to work independently and to design and critically evaluate practical investigations and the peer-reviewed scientific literature.

Compulsory modules	Credits	Optional modules ¹	Credits
Biological and Medicinal Chemistry 2	15	Group 1:	
		Chemistry/Medicinal Chemistry Research	15
		Project	
		Chemistry/Medicinal Chemistry Dissertation	15
Topics in Medicinal Chemistry	15	Group 2:	
		Advanced Organic Chemistry	15
		Kinetics, Photochemistry & Inorganic	15

|--|

¹ Students must select one module from Optional Core Group 1 and one module from Optional Core Group 2, to a total of 60 credits in Medicinal Chemistry.

NB: if you choose to specialise in Medicinal Chemistry in your final year you will study the following modules:

Compulsory modules	Credits	Optional modules ¹	Credits
Chemistry/Medicinal Chemistry	15	Kinetics, Photochemistry & Inorganic	15
Research Project		reaction Mechanisms	
Chemistry/Medicinal Chemistry	15	Forensic Toxicology	15
Dissertation			
Advanced Organic Chemistry	15		
Medicinal and Biological Chemistry 2	15		
Advanced Chemical Analysis	15		
Topics in Medicinal Chemistry	15		

¹ Students must select at least one of the option modules for a minimum of 105 credits in Chemistry.

For further information on the content of modules currently offered, including the list of elective modules, please visit: www.keele.ac.uk/recordsandexams/az

9. Final and intermediate awards

Credits required for each level of academic award are as follows:

Honours Degree	360 credits	You will require at least 120 credits at levels 4, 5 and 6.
		Combined Honours:
		A minimum of 135 credits in each Principal Subject (270 credits in total), with at least 45 credits at each level of study (Levels 4, 5 and 6) in each of two Principal Subjects (90 credits per year). Your degree title will be X and Y (e.g. 'Medicinal Chemistry and Physics').
		If you choose to study one Principal subject in your final year of study a minimum of 90 credits in that subject is required. Your degree title will be X with Y (e.g. 'Medicinal Chemistry with Physics').
Diploma in Higher Education	240 credits	You will require at least 120 credits at level 4 or higher and at least 120 credits at level 5 or higher
Certificate in Higher Education	120 credits	You will require at least 120 credits at level 4 or higher

Medicinal Chemistry with International Year: in addition to the above students must pass a module covering the international year in order to graduate with a named degree in Medicinal Chemistry with international year. Students who do not complete, or fail the international year, will be transferred to the three-year Medicinal Chemistry programme.

10. How is the Programme assessed?

The wide variety of assessment methods used within Chemistry and Medicinal Chemistry at Keele reflects the broad range of knowledge and skills that are developed as you progress through the degree programme. Teaching staff pay particular attention to specifying clear assessment criteria and providing timely, regular and

constructive feedback that helps to clarify things you did not understand and helps you to improve your performance. The following list is representative of the variety of assessment methods used within Chemistry:

- **Unseen written examinations** test students' knowledge and understanding of the subject. Examinations may consist of long or short answer questions
- Pre-laboratory exercises structured exercises designed to increase students understanding of the
 theory and techniques required by a specific laboratory practical and may require the student to read
 the lab script, watch short videos of techniques, perform calculations, answer short questions and
 look up information
- Laboratory reports are structured proformas and full lab reports are formal summaries of work carried out in the laboratory and test students' understanding of the practical aspects of the programme and develop the skills necessary to enable students to present and analyse their results.
- Laboratory diaries are a hand-written record of work carried out in laboratory sessions, maintained
 regularly and kept in accordance with laboratory diary checklists and guidelines provided in the
 laboratory script. Typically, a selection of experiments carried out in each module will be assessed at
 the end of the semester
- **Practical examinations** are a series of laboratory or computer based exercises designed to directly assess a student ability to perform a specific procedure or type of data analysis
- **Oral examinations** students answer questions posed by members of staff on a specific topic such as a laboratory experiment, item of coursework, or a research project
- IT assignments and computer-based exercises (e.g. spreadsheets exercises) various activities
 designed to assess students' ability to use software to retrieve, analyse and present scientific data in
 a variety of formats
- Class tests taken either conventionally or online via the Keele Learning Environment (KLE) assess students' subject knowledge and their ability to apply it in a more structured and focused way
- Information retrieval exercises require students to locate and analyse information of different types
 from the internet, various databases, scientific publications and textbooks. The information is then
 presented in a prescribed written format
- Research projects and reports test student's knowledge of different research methodologies and the limits and provisional nature of knowledge. They also enable students to demonstrate their ability to formulate research questions and to answer them using appropriate methods
- Research proposals require students to develop an independent research project and think through
 theoretical problems surrounding methodology and practical concerns relating to, for example,
 availability of sample, financial restrictions, and time limits. This form of assessment is key to the
 development of independent research skills and a portfolio of employability skills
- Oral and poster presentations and reports assess individual students' subject knowledge and
 understanding. They also test their ability to work effectively as members of a team, to communicate
 what they know orally and visually, and to reflect on these processes as part of their own personal
 development
- Video/screencast presentations require students to produce a short video or screencast on a given topic and assess students' knowledge and understanding, and ability to communicate what they know orally and visually, and to reflect on these processes as part of their own personal development

11. Contact Time and Expected Workload

This contact time measure is intended to provide you with an indication of the type of activity you are likely to undertake during this programme. The data is compiled based on module choices and learning patterns of students on similar programmes in previous years. Every effort is made to ensure this data is a realistic representation of what you are likely to experience, but changes to programmes, teaching methods and assessment methods mean this data is representative and not specific.

Undergraduate courses at Keele contain an element of module choice; therefore, individual students will experience a different mix of contact time and assessment types dependent upon their own individual choice of modules. The figures below are an example of activities that a student may expect on your chosen course by year/stage of study. Contact time includes scheduled activities such as: lecture, seminar, tutorial, project supervision, demonstration, practical classes and labs, supervised time in labs/workshop, fieldwork and external visits. The figures are based on 1,200 hours of student effort each year for full-time students.

Activity	Year 1 (Level 4)	Year 2 (Level 5)	Year 3 (Level 6)
Scheduled learning and	48%	37%	14%
teaching activities			
Guided independent	52%	63%	86%
Study			
Placements	0%	0%	0%

12. Accreditation

Programmes entitled Medicinal Chemistry with X, i.e. where students specialise in Medicinal Chemistry in their final year, are accredited by the Royal Society of Chemistry, and will be subjected to re-accreditation in May 2018.

13. Regulations

The University Regulations form the framework for learning, teaching and assessment and other aspects of the student experience. Further information about the University Regulations can be found at: http://www.keele.ac.uk/student-agreement/

A student who has completed a semester abroad will not normally be eligible to transfer onto the International Year option.

Medicinal Chemistry Regulations

These regulations supplement the relevant University Academic Regulations which are to be found on the University Web-site and in the University Calendar.

In the event of a contradiction or other discrepancy between these regulations and University Academic Regulations, the University Academic Regulations shall be authoritative, unless approval has been given by Senate for a variation from the University Academic Regulations.

1. Details of the Award

- (a) BSc Combined and Single Honours students will be eligible to transfer to the MChem at the end of Level 4 if they achieve an average of 50% in all modules.
- (b) Any student who fails to satisfy the requirements for progression to Level 7 shall revert to BSc Honours Degree candidature and be considered for the award of an Honours Degree (BSc Medicinal Chemistry) under the provisions of regulation 1A.
- (c) Any student who fails to satisfy the requirements for the award of a Master's degree shall revert to BSc Honours Degree candidature and be considered for an award as detailed in part (b) above, and be eligible for Royal Society of Chemistry accreditation.

(d) In accordance with Regulation 1F 11.3, condonement is available whereby credit will be awarded to a student for one or more modules with a mark between 30 and 39 at Levels 4*, 5* or 6*. Condonement of up to 60 credits is allowable, but shall not exceed 30 such credits across Levels 4 and 5, and no more than 30 credits at Level 6. [*excluding those classed as 'Qualified Fails'.]

2. Laboratory Classes

- (a) Laboratory classes are compulsory and are an essential part in fulfilling the intended learning outcomes of modules of which they are part, and a requirement of Royal Society of Chemistry accreditation. Failure to attend a significant number (> 50%) of the laboratory classes without good cause will result in failure of the module with no reassessment being offered.
- (b) Further to the provisions of regulations 1A and 1F, any student failing to attend one laboratory class and unable to provide good cause for their absence in advance, or within 5 working days of their absence, will be issued with an informal academic warning. Thereafter warnings will be issued in line with School of Chemical and Physical Sciences policy. This is to ensure students understand the need to attend laboratory classes in order to fulfil the learning outcomes and to meet the requirements of accreditation.
- (c) Any student failing to follow the health and safety guidelines in the undergraduate laboratory will be asked to leave. This may include inappropriate dress, refusal to follow reasonable requests of staff, or attending under the influence of alcohol or other substances. The student will not be permitted to make up the missed session.
- (d) Further to the provision of Regulation 8, any student missing one laboratory class may self-certify their absence. In the event of missing multiple laboratory classes, an EC will be required and independent evidence may be requested for substantial absence. There is no opportunity to make up missed laboratory sessions due to timetable constraints and so the following concessions will be made available to the student:
 - i. the student may be given opportunity to submit assessed work based on an alternative laboratory session, in agreement with the module leader and year tutor;
 - ii. with the approval of the Discipline Board of Examiners, a small element of the laboratory assessment (up to 33%) may be disregarded with the final mark for the assessment being recalculated from the remaining elements.

3. Other Compulsory Classes

Various compulsory classes (including workshops, assessment introductions, team-based learning sessions, tutorials, class tests and feedback sessions), at which attendance is compulsory, form an essential part of the chemistry/medicinal chemistry teaching programme. Failure to attend these sessions will result in warnings being issued in line with School of Chemical and Physical Sciences policy. In addition, failure to attend a significant number (>50%) of these sessions without good cause may result in reassessment being denied.

4. Coursework Assessment

Failure to engage appropriately with a module's coursework assessment items without good cause (that is, by failing to submit more than 50% of coursework items) may result in reassessment being denied.

14. Other learning opportunities

Study abroad (semester)

Because studying abroad has potential implications for Royal Society of Chemistry accreditation of the BSc degree students wishing to Study Abroad must discuss this in advance with the School of Chemical and Physical Sciences Chemistry and Forensic Science 'Study Abroad tutor' to identify and agree whether any guided study will be required to ensure their eligibility for Royal Society of Chemistry Accreditation.

Students on the Medicinal Chemistry programme have the potential opportunity to spend a semester abroad in their second year studying at one of Keele's international partner universities.

Exactly which countries are available depends on the student's choice of degree subjects. An indicative list of countries is on the website (http://www.keele.ac.uk/studyabroad/partneruniversities/); however this does not guarantee the availability of study in a specific country as this is subject to the University's application process for studying abroad.

No additional tuition fees are payable for a single semester studying abroad but students do have to bear the costs of travelling to and from their destination university, accommodation, food and personal costs. Depending on the destination they are studying at additional costs may include visas, study permits, residence permits, and compulsory health checks. Students should expect the total costs of studying abroad to be greater than if they study in the UK, information is made available from the Global Education Team throughout the process, as costs will vary depending on destination

Whilst students are studying abroad any Student Finance eligibility will continue, where applicable students may be eligible for specific travel or disability grants. Students studying in Erasmus+ destinations may be eligible for grants as part of this programme. Students studying outside of this programme may be eligible for income dependent bursaries at Keele.

Students travel on a comprehensive Keele University insurance plan, for which there are currently no additional charges. Some governments and/or universities require additional compulsory health coverage plans; costs for this will be advised during the application process.

Study Abroad (International Year)

A summary of the International Year, which is a potential option for students after completion of year 2 (Level 5), is provided at Annex A.

Other opportunities

If you are interested in spending a year in industry on a placement, then our Careers Tutor will advise and support you in applying for suitable placements.

15. Additional costs

As to be expected there will be additional costs for inter-library loans and potential overdue library fines, print and graduation.

We do not anticipate any further costs for this undergraduate programme.

16. Document Version History

Date of first approved version (v1.0): 22nd September 2017

Revision history

Version number Author Date Summary of and rationale for changes

¹ 1.1, 1.2 etc. are used for minor changes and 2.0, 3.0 etc. for major changes (as defined in the University's Guidance on processes supporting curriculum changes)

Annex A

Medicinal Chemistry with International Year

Please note: in order to be eligible to take the International Year option your other subject must also offer this option. Please refer to the information published in the course document for your other subject.

International Year Programme

Students registered for Combined Honours Medicinal Chemistry may either be admitted for or apply to transfer during their period of study at Level 5 to the Combined Honours programme in both their principal subjects, providing that they meet the progression criteria outlined in this document. Students accepted onto the International Year programme will have an extra year of study at an international partner institution after they have completed Year 2 (Level 5) at Keele.

Students who successfully complete both the second year (Level 5) and the International Year will be permitted to progress to Level 6. Students who fail to satisfy the examiners in respect of the International Year will normally revert to the Combined Honours programme without the International Year and progress to Level 6 on that basis. The failure will be recorded on the student's final transcript.

Study at Level 4, Level 5 and Level 6 will be as per the main body of this document. The additional detail contained in this annex will pertain solely to students registered for 'Medicinal Chemistry with International Year'.

International Year Programme Aims

In addition to the programme aims specified in the main body of this document, the international year programme of study aims to provide students with:

- 1. Personal development as a student and a researcher with an appreciation of the international dimension of their subject
- 2. Experience of a different culture, academically, professionally and socially

Entry Requirements for the International Year

Students may apply to the 4-year programme during Level 5. Admission to the International Year is subject to successful application, interview and references from appropriate staff.

The criteria to be applied are:

- Academic Performance (an average of 60% across all modules at Level 5 is normally required)
- General Aptitude (to be demonstrated by application for study abroad, interview during the 2nd semester of year 2 (Level 5), and by recommendation of the student's personal tutor, 1st and 2nd year tutors and programme director)

Student Support

Students will be supported whilst on the International Year via the following methods:

- Phone or Skype conversations with Study Abroad tutors, in line with recommended Personal Tutoring meeting points.
- Support from the University's Global Education Team

Learning Outcomes

In addition to the learning outcomes specified in the main text of this document, students who complete a Keele undergraduate programme with International Year will be able to:

i) Describe, discuss and reflect upon the cultural and international differences and similarities of

different learning environments

- ii) Discuss the benefits and challenges of global citizenship and internationalisation
- iii) Explain how their perspective on their academic discipline has been influenced by locating it within an international setting.

In addition, students who complete 'Medicinal Chemistry with International Year' will be able to:

- iv) Describe, discuss and reflect upon the cultural and international differences and similarities of different learning environments
- v) Discuss the benefits and challenges of global citizenship and internationalisation
- vi) Explain how their perspective on their academic discipline has been influenced by locating it within an international setting
- vii) Design, plan and critically evaluate practical investigation, record relevant information accurately and systematically and be able to reflect upon the data in critical manner
- viii) Develop, synthesize and apply fundamental principles and solve specific problems in the context of medicinal chemistry.

Please note that students on Combined Honours programmes with International Year must meet the subject-specific learning outcomes for BOTH their principal subjects.

These learning outcomes will all be assessed by the submission of a satisfactory individual learning agreement, the successful completion of assessments at the partner institution and the submission of the reflective portfolio element of the international year module.

Course Regulations

Students registered for the 'Medicinal Chemistry with International Year' are subject to the course specific regulations (if any) and the University regulations. In addition, during the International Year, the following regulations will apply:

Students undertaking the International Year must complete 120 credits, which must comprise at least 40% in the student's discipline area.

This may impact on your choice of modules to study, for example you will have to choose certain modules to ensure you have the discipline specific credits required.

Students are barred from studying any Medicinal Chemistry module with significant overlap to Level 6 modules to be studied on their return. Significant overlap with Level 5 modules previously studied should also be avoided.

Additional costs for the International Year

Tuition fees for students on the International Year will be charged at 15% of the annual tuition fees for that year of study, as set out in Section 1. The International Year can be included in your Student Finance allocation, to find out more about your personal eligibility see: www.gov.uk

Students will have to bear the costs of travelling to and from their destination university, accommodation, food and personal costs. Depending on the destination they are studying at additional costs may include visas, study permits, residence permits, and compulsory health checks. Students should expect the total costs of studying abroad be greater than if they study in the UK, information is made available from the Global Education Team throughout the process, as costs will vary depending on destination.

Students studying in Erasmus+ destinations may be eligible for grants as part of this programme. Students studying outside of this programme may be eligible income dependent bursaries at Keele.

Students travel on a comprehensive Keele University insurance plan, for which there are currently no additional charges. Some Governments and/or universities require additional compulsory health coverage plans; costs for this will be advised during the application process.